Normal bundles of rational curves on complete intersections
نویسندگان
چکیده
منابع مشابه
On the Normal Bundles of Smooth Rational Space Curves
in this note we consider smooth rational curves C of degree n in threedimensional projective space IP 3 (over a closed field of characteristic 0). To avoid trivial exceptions we shall always assume that n ~ 4 (this does not hold however for certain auxiliary curves we shall consider). Let N = N c be the normal bundle of C in IP 3. Since degel(IP3)=4, and d e g c l ( l P 0 = 2 , we have that d e...
متن کاملOn the Intersections of Rational Curves with Cubic Plane Curves
Let V be a generic quintic threefold in the 4-dimensional complex projective space P. A well-known conjecture of Clemens says that V has only a finite number of rational curves in each degree. Although Clemens’ conjecture is still quite open at this moment (it is known to be true for degree up to 7 by S. Katz [K]), recently physicists, based on the mirror symmetry principle, have proposed a for...
متن کاملSpace Curves as Complete Intersections
This is an expository account based mainly on an article by Jack Ohm titled “Space curves as ideal-theoretic intersections”. It also gives a proof of the fact that smooth space curves can be realized as set-theoretic complete intersections. The penultimate section proves the theorem of Cowsik and Nori : Curves in affine n-space of characteristic p are set-theoretic complete intersection.
متن کاملSmall rational curves on the moduli space of stable bundles
For a smooth projective curve C with genus g ≥ 2 and a degree 1 line bundle L on C, let M := SUC(r,L) be the moduli space of stable vector bundles of rank r over C with the fixed determinant L. In this paper, we study the small rational curves on M and estimate the codimension of the locus of the small rational curves. In particular, we determine all small rational curves when r = 3.
متن کاملNuclei of Normal Rational Curves
A k–nucleus of a normal rational curve in PG(n, F ) is the intersection over all k–dimensional osculating subspaces of the curve (k ∈ {−1, 0, . . . , n− 1}). It is well known that for characteristic zero all nuclei are empty. In case of characteristic p > 0 and #F ≥ n the number of non–zero digits in the representation of n+ 1 in base p equals the number of distinct nuclei. An explicit formula ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Contemporary Mathematics
سال: 2019
ISSN: 0219-1997,1793-6683
DOI: 10.1142/s0219199718500116